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Abstract
We perform first-principles calculations of the equilibrium conductance of carbon and silicon
atomic wires coupled to two Al(100) nanoscale electrodes using the nonequilibrium Green
formalism combined with the density functional theory. The conductance of atomic wires with
quite a large range of number of atoms from N = 3–20 is considered. Our calculations show
that, for the carbon atomic wire, the equilibrium conductance as a function of the number of
atoms (G–N relation) exhibits evident oscillatory behavior when the wire is not very long, and
there is a big difference in conductance between the even-numbered wire and the odd-numbered
wire. This difference becomes smaller and smaller with increasing wire length, until finally the
conductance saturates to a constant value. The G–N relation for the Si atomic wires shows
similar behavior when the number of atoms N < 9, but great differences appear when N � 9.
Compared with the cases with numbers of atoms N = 5–9 where the conductance of
even-numbered wires is larger than that of the odd-numbered wires, the opposite result is
obtained with N = 10–14. As a whole, the conductance for Si wires shows an even–odd
oscillatory behavior in a period of ‘M’ shape. The above behavior is analyzed via the charge
transfer and the projected density of states (PDOS) and reasonable explanations are presented.

1. Introduction

Electron transport through atomic nanocontacts has been an
active research area for a decade, both experimentally and
theoretically, because such contacts represent the ultimate
size limit of functional nanodevices [1–4]. Atomic
nanocontacts are structures with low atomic coordination
number and, as a result, they can behave very differently
from their bulk counterparts. In fact, many valuable and
interesting results have been found from atomic wires,
including metallic nanowires, semiconducting nanowires and
insulating nanowires [5–8]. For example, an even–odd
numbered conductance oscillatory behavior was found in metal

Na [9, 10], Au [11] and Pt [11] atomic wires, and also the
I –V curves through the atomic wires were strongly nonlinear.
Things are very different for the Al atomic wires [12]. The
conductance oscillates with a period of four atoms for wires
with a typical interatomic spacing of 2.39 Å, but with another
period of six atoms for wires with the interatomic spacing
of bulk fcc aluminum, 2.86 Å. In experiments, fabrication
of atomic wires has progressed along several lines. With
the advantages of scanning tunneling microscopes or atomic
force microscopes, an atomic wire can be formed between
a sharp tip and a substrate and its electrical properties can
be measured [13]. The atomic wire formed in this way
can be extremely small, involving only a few atoms or
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(a)

(b)

Figure 1. Model structure of an atomic wire sandwiched between two Al(100) nanoscale electrodes with finite cross-section: (a) for carbon;
(b) for silicon.

(This figure is in colour only in the electronic version)

even just a single atom. In addition, substantial effort has
been devoted to the fabrication of free-standing atomic wires
using various methods [14]. For instance, several processes
based on lithographic techniques have fabricated silicon or
polycrystalline Si nanowires with sizes in the few-nanometer
range [15]. A linear carbon atom wire, containing up to
20 atoms connected at the ends to metal atoms, has been
synthesized [16], and so has an Si atomic wire [17].

Silicon nanowires (SiNWs) are promising building blocks
for the bottom-up approach to nanoelectronics since the
physical and chemical characteristics of SiNWs, including
diameter, surface composition and electronic properties, can
in principle be controlled during synthesis [17, 18]. Recently,
several theoretical calculations have been done with the
ultimately thin atomic wire of Si. By solving a three-
dimensional quantum scattering problem and using a model
of jellium electrodes, Mozos et al have calculated the
conductance of Si atomic wires with up to eight atoms [6].
A conductance dip is found to develop near the onset of the
second quantized plateau as the number of atoms increases.
In a similar account, Okoano et al performed eigenchannel
analyses of the electron transport in Si and Al atomic wires
using jellium electrodes [1]. In 2005, Senger et al investigated
conductance variations of monatomic Si wires in between Al
electrodes as functions of wire length with a first-principles
pseudopotential plane wave method [17]. An even–odd
oscillation of conductance was found in Si atomic wires for
the atom number range N = 5–11. Carbon atomic wires
are interesting conductors and have attracted considerable
attention recently [19, 20]. A linear atomic wire of carbon is
even a better conductor than gold wire. In particular, due to
charge transfer doping to the carbon atoms from the electrodes,
the equilibrium conductance of short carbon wires varies with
its length in a semiperiodic fashion. Such behavior is neither
ohmic nor ballistic and therefore represents an interesting
conduction behavior entirely due to the atomic nature of the
carbon valence. In this paper we present a systematic study of
the properties of equilibrium conductance in C and Si atomic
wires with from 3 to 20 atoms in the wire and find some
unexpected results. When the length of carbon atomic wire
continues to increase, the conductance comes to be a constant.
The conductance for Si wires shows even–odd oscillatory
behavior in a period of ‘M’ shape.

2. Simulation model and calculation method

The simulation models for our calculations are illustrated in
figure 1: a silicon atomic wire or a carbon atomic wire is
sandwiched between two Al(100) nanoscale electrodes with
semi-infinite cross-section. We have chosen a supercell with
a large enough vacuum layer in the x and y directions so
that the device has no interaction with its mirror images. In
the calculations, the whole system is divided into three parts:
the scattering region and the left and right electrodes. The
atomic wire together with four surface atomic layers in the left
electrode and three surface atomic layers in the right electrode
is chosen as the central scattering region, as indicated by the
two vertical lines. The electrode is extracted from a perfect
Al crystal along the (100) direction, and the number of atoms
in each atomic layer is arranged as 5, 4, 5, 4, . . .. Four Al
atomic layers (5, 4, 5, 4) are selected for the electrode cell.
The terminal atoms of the wires are positioned symmetrically
above the Al(100) hollow sites. The contact distance between
the atomic wire and the electrodes is fixed at d = 1.0 Å for
carbon wire and d = 2.0 Å for silicon wire. The distance
between carbon atoms is chosen as 1.323 Å, and 2.348 Å is
chosen as the distance between silicon–silicon atoms. More
details will be given later.

The calculations for transport properties were performed
using a recently developed first-principles package, the
TranSIESTA-C method, which is based on the nonequilibrium
Green’s function (NEGF) technique. TranSIESTA-C, as is
implemented in the well tested SIESTA method, is capable
of fully self-consistently modeling the electrical properties
of nanoscale devices that consist of an atomic scale system
coupling with two semi-infinite electrodes as shown in figure 1.
The potential in the semi-infinite electrodes provides natural
real space boundary conditions for the Kohn–Sham potential
of the scattering region, so the electronic structure of the
two electrodes must be computed before the self-consistency
procedure of the scattering region starts, but it will be
calculated for only once. The coupling of the scattering
region with the electrodes is taken into account by self-
energies. Details of the method and relevant references can
be obtained elsewhere [21, 22]. In our calculation, the
convergence criterion for the Hamiltonian, charge density
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Figure 2. The conductance as a function of the number of atoms N : (a) for carbon wires; (b) for silicon wires.

 0.9

 1.0

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 4  6  8  10  12  14  16  18  20

C
ha

rg
e 

tr
an

sf
er

(e
)

N

(a)

 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 4  6  8  10  12  14  16  18  20

C
ha

rg
e 

tr
an

sf
er

(e
)

N

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4  6  8  10  12  14  16  18  20

N

(b)

Figure 3. The charge transfer as a function of number of atoms N from the electrodes to the atomic wires: (a) for carbon wires; (b) for silicon
wires.

and band structure energy is 10−4 and the atomic cores are
described by norm-conserving pseudopotentials.

3. Results and discussion

To get the distance of two adjacent atoms in the atomic wires,
we first calculate the bond length for an infinite wire by
changing the lattice constants. For the structure with the lowest
energy for the C wire it is 1.323 Å, while for Si wire it
is 2.348 Å. Both values agree very well with the literature
values [19, 23]. For all the wires with a finite length, an equal
distance is chosen between each pair of nearest atoms, as done
in the literature, and it is taken as the above values.

Figure 2 shows the equilibrium conductance as a function
of atomic number N for carbon and silicon wires. From the
figure, we can see that the conductance oscillates with the
number of atoms N for both C and Si wires. For the carbon
wire, if we focus on those wires with an odd number of atoms,
we find that the conductance is increasing monotonically
with N , while it is decreasing with N for even-numbered
wires. Therefore, the conductance difference between the
even-numbered wire and the odd-numbered one becomes
smaller and smaller, and at last the conductance saturates to
a constant. Things are greatly different for the silicon wires.
Firstly, the conductance does not come to a constant when the
number of atoms in the wire increases from 3 to 20; secondly,
the conductance for the even-numbered wire is not always
bigger than the odd-numbered wire, but shows an even–odd
oscillatory behavior with a period of ‘M’ shape. Based on

the above facts, we want to ask the following questions: why
does the conductance difference between the even-numbered
and odd-numbered carbon wires become smaller and smaller
with increasing N and finally saturate to a constant, while it is
always oscillating with a random feature in Si wires? Why is
the difference between the C and Si wires so big since they are
from the same group in the periodic table?

It is well known that half-filled orbitals contribute to
electrical conduction while full orbitals do not. So we can
say that the closer the orbital is to being half-filled, the better
the orbital conducts, while the closer the orbital is to being
fully filled, the worse it conducts. According to Lang and
Avouris [19], a free N-atom carbon wire has (N − 1)/2
fully occupied π orbitals when N is odd, and (N/2) − 1 π
full occupied orbitals and one half-filled orbital when N is
even. In our calculations, the charges transferred from the
electrodes to the carbon wire are studied for all the cases, as
shown in figure 3. The number of transferred charges increases
with increase in the number of atoms for both odd-and even-
numbered carbon wires. When we look at it as a whole, the
charge transfer increases in an even–odd oscillating way. It
is known that odd-numbered free carbon wires have a fully
occupied highest occupied molecular orbital (HOMO) level.
Under the interaction of the electrodes, the lowest unoccupied
molecular orbital (LUMO) will be partially filled due to the
charge transfer from the electrodes. Because the number of
the charge which the wires get from the electrodes increases
quickly and becomes closer and closer to two electrons (in
other words, the LUMO is closer and closer to being half-
filled) the conductance of an odd-numbered wire increases with
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Figure 4. The evolution of HOMO and LUMO as a function of the atom number: (a) for C wires; (b) for Si wires.

the increase in the number of atoms. The even-numbered
free wires, however, have a half-filled HOMO. When they
are placed between the Al (100) electrodes, with the increase
in the number of atoms the number of electrons transferred
from the electrodes to the wires increases and becomes nearer
and nearer to two, so this HOMO becomes fuller and fuller.
That is the reason why the conductance of the even-numbered
wires decreases with increasing length of the wire. From the
above, we understand why the conductance difference between
the even-numbered and odd-numbered carbon wires becomes
smaller and smaller.

The silicon atom, though it has the same number of
valence electrons as the carbon atom in the outermost layer,
has three layers outside the atomic nucleus, which is one layer
more than that of the carbon atom. This makes it harder to get
electrons, which can also be seen from figure 3(b) where the
charge transfer from the electrodes to the silicon wire is much
smaller than that for the carbon wire. The maximum number
of the transferred charge is just about 0.45e, which has a rather
smaller influence on the conductance. In particular, we do not
see a clear even–odd oscillating behavior in the change of the
charge transfer as in the carbon atomic wires.

It is interesting to notice that both the conductance and
the charge transfer have the same oscillating period, namely 2,
in the carbon wires, while the oscillating feature in the silicon
wires is different. At least, for the carbon wires, we can see
that the conductance is closely related to the charge transfer.
Then what determines the charge transfer in these systems? A
natural factor is the alignment evolution of the LUMOs or the
half-filled HOMOs of the atomic wires with the Fermi level of
the electrode. Therefore, we plot the evolution of the HOMO
and LUMO of the atomic wires as a function of atom number
in figure 4. We find that, in the carbon wires, the energy of the
LUMO and HOMO also oscillate in the same way as the charge
transfer and the conductance, namely, with a period of 2. This
is easy to understand, since the even–odd oscillation of the
LUMO and HOMO will affect the charge transfer and further
affect the conductance in the carbon wire. In comparison, the
energy of the LUMO and HOMO in the silicon wires oscillates
in a completely different way and the oscillation magnitude
is much smaller. Correspondingly, we cannot clearly see the
oscillation of the charge transfer in them.

For carbon wires, charge transfer is enough to account
for the oscillating behavior, while for silicon wires we cannot

get enough information from the charge transfer alone to
understand its oscillating conductance. To further understand
the reason for the even–odd oscillatory behavior with a period
of ‘M’ for Si wire, we calculate n(E) (PDOS as a function
of the incident electron energy E) for each Al(100)–Si wire–
Al(100) structure. Here we just choose the n(E) for wires with
number of atoms ranging from 5 to 12, as shown in figure 5,
which will be enough to explain the conductance behavior. The
density of states of the combined system projected onto the
basis orbitals of the silicon wires is calculated by P(E) =
〈ϕm(E)|ψ(E)〉 = ∑mol

i ci (E)φi(�r)| ∑all
j c j (E)φ j(�r), where

ψ(E) is the eigenstate of the whole system and ϕm(E) is the
contribution of the basis orbitals of the atomic wire to ψ(E),
{φ} is the nonorthogonal basis set of the system, and ci and c j

are expanding coefficients. The sum over i runs over the basis
orbitals of the atomic wire, and the sum over j runs over all
the basis orbitals of the whole system. The PDOS will give us
information on how much the basis orbitals in the atomic wire
contribute to the eigenstate of the whole open system and how
strongly the molecule couples with the electrodes at a certain
energy E [24]. We can see in figure 5 that when the number
of atoms in the wire is 5, 7, 9 or 10, the PDOS at the Fermi
energy (E = 0) is at the valley or near the valley in the curve.
Then we can conclude that the Si wire with N = 5, 7, 9 or 10
atoms has rather weak coupling with the electrodes at the Fermi
energy. A weak coupling makes incident electrons at a certain
energy hardly transmit across the wire and this leads to a low
transmission coefficient at this energy. This can be verified by
the transmission curve T (E) for the cases when N = 5, 7, 9
or 10 where the transmission coefficient is at the valley or near
the valley at the Fermi energy (see figure 6). While for Si wire
with the N = 6, 8 or 11 atoms it is completely different. The
coupling between the wire and the electrodes is comparatively
strong at the Fermi energy which can be seen from figure 5
for N = 6, 8 or 11 where the PDOS reaches its peak value at
the Fermi energy. Then strong coupling gives rise to the high
transmission for the wires with N = 6, 8 or 11 atoms, which
can be also proved in figure 6. Then an even–odd oscillatory
behavior occurs with a period of ‘M’ for Si wire. To sum up
the above arguments, the reason for the even–odd oscillatory
behavior with a period of ‘M’ for Si wire is determined by the
coupling between the wire and the electrodes.
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Figure 5. The PDOS as a function of the incident electron energy E for the Al(100)–Si wire–Al(100) system with N = 5–12 silicon atoms,
respectively.
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4. Conclusion

First-principles calculations based on density functional theory
are presented to study the equilibrium conductance of carbon
and silicon atomic wires coupled to two Al(100) nanoscale
electrodes. Some interesting phenomena are found. For
the carbon atomic wire, the equilibrium conductance as a
function of the number of atoms exhibits evident oscillatory
behavior when the wire is not very long. The conductance
of the even-numbered wires is monotonically decreasing and

is monotonically increasing in the odd-numbered wires. So
there is an obvious conductance difference between the even-
numbered wire and the odd-numbered wire, but this difference
becomes smaller and smaller with increasing wire length,
until finally the conductance becomes constant. Interestingly,
the conductance, charge transfer and the LUMO/HOMO all
oscillate with the same strict even–odd period in the carbon
wires. The G–N relation for the Si atomic wires shows
similar behavior when the number of atoms N < 9, but
great differences appear when N exceeds 9. The conductance
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of the even-numbered wires is larger than that of the odd-
numbered wires with N = 5–9, while an opposite result is
obtained for N = 10–14. As a whole, the conductance for
Si wires shows even–odd oscillatory behavior in a period of
‘M’. This unusual behavior can be understood in terms of
coupling between the silicon wires and the electrodes and the
coupling may be measured to some extent by the PDOS. In
fact the coupling is associated with many elements, such as the
structure and the kind of the electrode, the central conductor,
and the contacts between them and so on, all of which will
make some contribution to the PDOS.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China under grant no. 10404010, the project
sponsored by SRF for ROCS, SEM and the Foundation of
Jiangxi Educational Committee under grant no. 112[2006].

References

[1] Okano Sh, Shiraishi K and Oshiyama A 2004 Phys. Rev. B
69 045401

[2] Aviram A and Ratner M A 1974 Chem. Phys. Lett. 29 277
[3] Zhang C, Du M H, Cheng H P, Zhang X G, Roitberg A E and

Krause J L 2004 Phys. Rev. Lett. 92 158301
[4] Emberly E G and Kirczenow G 2003 Phys. Rev. Lett.

91 188301
[5] Untiedt C et al 2002 Phys. Rev. B 66 085418
[6] Mozos J L, Wan C C, Taraschi G, Wang J and Guo H 1997

Phys. Rev. B 56 4351

[7] Larade B, Taylor J, Mehrez H and Guo H 2001 Phys. Rev. B
64 075420

[8] Sun Q, Wang Q, Kawazoe Y and Jena P 2004 Nanotechnology
15 260

[9] Egami Y, Ono T and Hirose K 2005 Phys. Rev. B 72 125318
[10] Tsukamoto S and Hirose K 2002 Phys. Rev. B 66 161402
[11] Smit R H M, Untiedt C, Rubio-Bollinger G, Segers R C and

van Ruitenbeek J M 2003 Phys. Rev. Lett. 91 076805
[12] Xu Y, Shi X Q, Zeng Z, Zeng Z Y and Li B W 2007 J. Phys.:

Condens. Matter 19 056010
[13] Reed M A, Zhou C, Muller C J, Burgin T P and Tour J M 1997

Science 278 252
[14] Tongay S, Durgun E and Ciraci S 2004 Appl. Phys. Lett.

85 6179
[15] Beckman R A, Johnston-Halperin E, Melosh N A, Luo Y,

Green J E and Heath J R 2004 J. Appl. Phys. 96 5921
[16] Roth G and Fischer H 1996 Organometallics 15 5766
[17] Senger R T, Tongay S, Durgun E and Ciraci S 2005 Phys. Rev.

B 72 075419
[18] Nakajima Y, Takahashi Y, Horiguchi S, Iwadate K, Namatsu H,

Kurihara K and Tabe M 1994 Appl. Phys. Lett. 65 2833
[19] Lang N D and Avouris P H 1998 Phys. Rev. Lett. 81 3515
[20] Lang N D and Avouris P H 2000 Phys. Rev. Lett. 84 358
[21] Brandbyge M, Mozos J L, Ordejón P, Taylor J and

Stokbro K 2002 Phys. Rev. B 65 165401
[22] Taylor J 2000 PhD Thesis McGill University
[23] Okano S, Shiraishi K and Oshiyama A 2004 Phys. Rev. B

69 045401
Mozos J-L, Wan C C, Taraschi G, Wang J and Guo H 1997

Phys. Rev. B 56 R4351
Senger R T, Tongay S, Durgun E and Ciraci S 2005 Phys. Rev.

B 72 075419
[24] Shi X Q, Zheng X H, Dai Z X, Wang Y and Zeng Z 2004

J. Phys. Chem. B 109 3334

6

http://dx.doi.org/10.1103/PhysRevB.69.045401
http://dx.doi.org/10.1016/0009-2614(74)85031-1
http://dx.doi.org/10.1103/PhysRevLett.92.158301
http://dx.doi.org/10.1103/PhysRevLett.91.188301
http://dx.doi.org/10.1103/PhysRevB.66.085418
http://dx.doi.org/10.1103/PhysRevB.56.R4351
http://dx.doi.org/10.1103/PhysRevB.64.075420
http://dx.doi.org/10.1088/0957-4484/15/3/004
http://dx.doi.org/10.1103/PhysRevB.72.125318
http://dx.doi.org/10.1103/PhysRevB.66.161402
http://dx.doi.org/10.1103/PhysRevLett.91.076805
http://dx.doi.org/10.1088/0953-8984/19/5/056010
http://dx.doi.org/10.1126/science.278.5336.252
http://dx.doi.org/10.1063/1.1839647
http://dx.doi.org/10.1063/1.1801155
http://dx.doi.org/10.1021/om960605x
http://dx.doi.org/10.1103/PhysRevB.72.075419
http://dx.doi.org/10.1063/1.112991
http://dx.doi.org/10.1103/PhysRevLett.81.3515
http://dx.doi.org/10.1103/PhysRevLett.84.358
http://dx.doi.org/10.1103/PhysRevB.65.165401
http://dx.doi.org/10.1103/PhysRevB.69.045401
http://dx.doi.org/10.1103/PhysRevB.56.R4351
http://dx.doi.org/10.1103/PhysRevB.72.075419
http://dx.doi.org/10.1021/jp046349g

	1. Introduction
	2. Simulation model and calculation method
	3. Results and discussion
	4. Conclusion
	Acknowledgments
	References

